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a b s t r a c t

The problem of contact between a rigid cylindrical indenter and a functionally graded (FG) beam is stud-

ied. The elastic modulus of the material varies in an exponential fashion across the thickness of the beam.

For the sake of comparison indentation of a homogeneous beam is also considered. In the case of FG

beams indentation of both soft and hard sides of the beam are studied. Results are presented for contact

force–contact length relations and contact stresses in the three types of beams. Maximum normal strains

and stresses and maximum transverse shear stresses are plotted as a function of strain energy (work done

by the indenter) in the beam. The results are extended to low-velocity impact problems. It is seen that for

a given impact energy in low-velocity impacts, the maximum stresses and strains are significantly lower

in FG beams when the impact occurs on the softer side of the beam.

Ó 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Low-velocity foreign object impact damage is a serious problem

in composite materials used in military and civil structures [1,2].

Laminated fiber composites are strong and stiff in the plane of fi-

bers; however they are prone to delamination under impact loads.

Attempts have been made to increase impact damage tolerance by

using toughened resins and translaminar reinforcements such as

Z-pinning and stitching [3,4]. Recently there is a renewed interest

in using three-dimensional woven composites in impact critical

structures [5–10]. All of the above methods focus on impact dam-

age tolerance and they do not increase impact damage resistance,

which is measured by the energy at which damage initiates under

impact. Recent advances in textile manufacturing processes allow

mixing different fibers to produce composites with varying stiff-

ness and strength properties [11,12]. Now it is possible to create

a functionally graded material (FGM) that could be optimized to

provide good structural stiffness for the given applications and at

the same time provide improved impact damage resistance.

FGMs have been studied extensively for the past 20 years

mostly for thermal barrier coatings [13–15]. Contact problems

for FGMs have been studied in the context of micro- and nano-

indentation techniques used to characterize the material gradation

[16,17]. Inverse methods are used to extract the material proper-

ties from indentation test results in conjunction with finite ele-

ment analysis. There are not many works dealing with the

impact response of structures made of FGMs. Gong et al. [18], stud-

ied the low-velocity impact of a functionally graded cylindrical

shell. The contact stiffness was assumed to be a function of the

properties of the outermost layer based on their earlier work

[19]. Etemadi et al. [20] performed 3D finite element analyses of

impact of sandwich beams with functionally graded cores. Since

they used 3D FEA, the contact problem could be modeled directly

without resorting to approximate contact laws. Apetre et al. [21]

developed a model to analyze sandwich plates with FG cores and

used that to study the low-velocity impact problem [22]. The con-

tact problem was solved using assumed contact stress method

[23]. In this paper we describe the contact problem of a rigid cylin-

der and a FG beam. Numerous past studies, both experimental and

analytical, have demonstrated the relevance of static contact prob-

lems to low-velocity impact response [24–28]. The main idea here

is that contact force–contact length and contact force–indentation

relations are almost the same in the static and dynamic problems

as the wave propagation effects are not significant in low-velocity

impact. Similarly the stresses in the vicinity of contact are also the

same leading to similar damage patterns both in quasi-static and

dynamic impact events [26]. Thus the impact damage resistance

can be characterized by performing static indentation tests or sta-

tic contact analysis.

2. Problem statement

Consider the beam shown in Fig. 1. Note that the x-axis is along

thebottomof thebeam, not in themid-plane. The lengthof thebeam

is L anddepth ish.Thebeam is assumed tobe in a stateof plane strain
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normal to the x–z plane, and the width in the y-direction is taken as

unity. The boundary conditions are similar to that of a simply

supported beam in the context of beam theory, but the exact bound-

ary conditions will become apparent later. The material is assumed

to be isotropic at every point and the Poisson’s ratio is assumed

to be a constant. The Young’s modulus varies exponentially in the

z-direction, and the variation is given by EðzÞ ¼ E0e
kz where k

determines the degree of gradation of the material properties in

the z-direction. The beam is indented by a smooth cylinder of radius

R at the center of the beam on the bottom face (Fig. 1). Our goal is to

determinea relationshipbetween the contact force F and the contact

length 2b, and also the detailed stress field in the beam for a given

contact force. The overarching goal of the paper is to understand

the effects of various types of gradation of material properties on

the stress field, especially in the vicinity of contact.

The governing equations of the problem are the two stress equi-

librium equations:
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The stiffness coefficients Cij will also vary as CijðzÞ ¼ Cijð0Þekz. For
the case of plane strain considered in this study Cij are related to E

and m by

C11 ¼ C33 ¼ Eð1ÿ mÞ
ð1þ mÞð1ÿ 2mÞ ; C13 ¼ Em

ð1þ mÞð1ÿ 2mÞ ;

C55 ¼ E

2ð1þ mÞ ð3Þ

Substituting the stress–strain relations (2) into the equilibrium

Eq. (1) and using the strain displacement relations exx ¼ @u
@x
; eyy ¼ @v

@y

and cxy ¼ @u
@y
þ @v

@x
the governing differential equations of the prob-

lem are obtained as
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The boundary conditions on the left and right ends of the beam

(x = 0 and x = L) are:

wð0; zÞ ¼ wðL; zÞ ¼ 0

rxxð0; zÞ ¼ rxxðL; zÞ ¼ 0
ð5Þ

One can note that the above BCs are similar to that of a simply

supported beam in the context of beam theory for slender beams,

i.e., L� h.

The top surface of the beam (z = h) is traction free:

rzzðx; hÞ ¼ sxzðx; hÞ ¼ 0 ð6Þ

On the bottom surface (z = 0) we have mixed boundary condi-

tions: the shear stress sxz vanishes everywhere on the bottom sur-

face; the normal stress rzz = 0 outside the contact region; and in

the contact region thew-displacements should be such that the de-

formed surface conforms to the shape of the rigid indenter. The

above BCs can be written as;

sxz ðx; 0Þ ¼ 0 ð7Þ

rzzðx; 0Þ ¼ 0; jvj > b;

v ¼ xÿ L=2 ðoutside the contact regionÞ ð8Þ

wðx; 0Þ ¼ Dÿ v2

2R
; jvj 6 b ðinside the contact regionÞ ð9Þ

where D is the indenter displacement in the z-direction, and 2b is

the contact length (see Fig. 1). Note that we have introduced the

variable v = (x ÿ L/2) to facilitate easy discussion of the contact

problem. The point v = 0 corresponds to the center of the beam.

The profile of the indenter in the vicinity of contact is approximated

as a parabola as shown in (9) which is valid only when the contact

length b is much smaller than the indenter radius R.

The contact problem will be solved using an assumed contact

stress approach. The contact stresses are assumed of the form

pzðxÞ ¼ ÿrzzðx; 0Þ ¼
X

N

i¼1

pi/iðxÞ; jvj 6 b ð10Þ

where /i are known functions of x, and pi are coefficients to be

determined such that they satisfy the contact condition (9). Noting

that w(L/2,0) = D, the contact condition can be written as

w
L

2
; 0

� �

ÿwðx; 0Þ ¼ v2

2R
; jvj 6 b ðinside the contact regionÞ

ð11Þ

A collocation method will be used to solve for pi. In this method

the above contact condition is satisfied at M number of discrete

points x = xj on the contact surface:

w
L

2
; 0

� �

ÿwðxj; 0Þ ¼
v2
j

2R
; jvjj 6 b ðj ¼ 1; M; M P NÞ ð12Þ

where vj ¼ ðxj ÿ L=2Þ. Note that M should be at least equal to N, but

it is found that matching the displacements at more number of

points improves the accuracy of the solution for contact stresses

[29]. Past studies show that equally spaced collocation points yield

good results [30,31]. The surface displacements w can be written as

linear combination of the unknown pressure coefficients pi:

X

N

i¼1

ðc0i ÿ cjiÞpi ¼
v2
j

2R
ðj ¼ 1; M; M P NÞ ð13Þ

where c0i is the central displacement w(L/2,0) and cji is equal to dis-

placement w(xj,0) at xj due to unit pi. The over determined system

of linear equations (13) can be solved for pi using the least square

error procedure.

The elasticity problem of an FG beam with the BCs given in Eq.

(5) and subjected to an arbitrary loading pz(x) was solved using

Fourier transforms in [29]. In this work procedures are described

for calculating the displacement field u(x,z) and w(x,z). The same

procedures can be used to determine the influence coefficients c0i

Fig. 1. A functionally graded beam indented by a rigid indenter. The elasticity

boundary conditions are shown in the top figure. Boundary conditions in the

context of beam theory are depicted in the bottom figure.
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and cji. In the following we give a brief description of the metho-

d.Our goal is to solve the pair of partial differential Eq. (4) sub-

jected to the boundary conditions (5) and (6). We will solve the

problem for the case pz(x) = qn sin nx where n = npx/L. The displace-

ments are assumed of the form

uðx; zÞ ¼ UðzÞ cos nx
wðx; zÞ ¼ WðzÞ sin nx

ð14Þ

Substituting the above displacements in the governing differen-

tial Eq. (4) we obtain a pair of ordinary differential equations (ODEs)

for U(z) and W(z) which are solved using the solution of the form

UðzÞ ¼
X

4

i¼1

aie
aiz

WðzÞ ¼
X

4

i¼1

bie
aiz

ð15Þ

where ai are roots of the characteristic equation associated with the

ODEs. The arbitrary constants ai and bi are solved using the stress

boundary conditions on the top surface of the beam given by (6),

and stress BCs on the bottom of the beam as given below:

szxðx; 0Þ ¼ 0

rzzðx; 0Þ ¼ ÿpzðxÞ ¼ ÿqn sin nx
ð16Þ

Once constants ai and bi are evaluated, the displacement field u

and v are completely determined, and the strains and stresses at

any point can be calculated using the strain–displacement rela-

tions and constitutive relations. For more details on the procedures

the reader is referred to [29].

3. Contact problem

3.1. Assumed contact stress distribution method

In this method [30,31] the contact is approximated as Hertzian

contact (elliptical contact stress distribution), and a one-term func-

tion for (10) is used as

pzðxÞ ¼ pm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1ÿ v
b

� �2
r

; jvj < b ð17Þ

Thus pm, the peak contact stress, is the only unknown. Then, Eq.

(13) to determine pm takes the form

pmðc0 ÿ cjÞ ¼
v2
j

2R
ðj ¼ 1; M; M P 1Þ ð18Þ

where c0 is the w-displacement at the center (x = L/2, z = 0) and cj
are the w-displacements at xj due to the elliptical contact load with

pm = 1. The least square error solution of the above equation is

pm ¼ 1

M

X

M

j¼1

v2
j

2Rðc0 ÿ cjÞ
ð19Þ

The influence coefficients c0 and cj can be calculated for

pzðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1ÿ v
b

ÿ �2
q

using the procedures described in [29]. That

method uses Fourier transforms to solve the elasticity equations

and load pz has to be expanded in the form of a Fourier series

pzðxÞ ¼
X

1

n¼1

qn sin
np
L

x ð20Þ

where the Fourier coefficients are given by

qn ¼ 2

L

Z L

0

pzðxÞ sin
npx
L

dx ð21Þ

For the case of Hertzian contact stress above the Fourier coeffi-

cients can be derived as
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n
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L
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where J1 is the Bessel function of the first kind. In evaluating the

above we have used the relation
Z c

ÿc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 ÿ x2
p

cos nx dx ¼ pc
n
J1ðcnÞ ð23Þ

3.2. Application to low-velocity Impact

The first step in solving a low-velocity foreign object impact

problem is to obtain the impact force history [25]. Numerous past

studies [24,26] – both experimental and analytical – have shown

that the load–deflection relation in low velocity impacts could be

approximated by corresponding static load–deflection relations.

Furthermore, the contact force–contact width (F–b) relations also

follow the corresponding quasi-static relations. This fact has been

used to simplify analysis of low velocity impact response and dam-

age of composite structures. Then the maximum impact force can

be related to the initial impact energy as

U ¼ 1

2
miv

2
i ¼ 1

2

F2
m

kb
ð24Þ

where the impact energy is the initial kinetic energy of the impact-

ing mass, Fm the maximum impact force, and kb is the bending stiff-

ness of the beam when a point load is applied at the center. In the

above energy relation strain energy due to local indentation in the

vicinity of contact is neglected.

4. Results and discussion

The dimensions of the beam used in this study are: length

L = 100 mm and depth h = 10 mm. A state of plane strain normal

to the y-axis is assumed and the width in the y-direction is taken

as unity. The radius of curvature of the indenter R in the numerical

examples is taken as 20 mm. Two types of FG beams and a homo-

geneous beam are considered. The Young’s moduli of the FG beams

and the homogeneous beam are given in Table 1. The through-the

thickness variation of E is shown in Fig. 2. In Beam 1 the grading

parameter k is positive, that is, the Young’s modulus increases from

20 to 200 GPa as z increase from 0 to h. This case will be designated

as soft impact as the beam is indented on the softer side. The value

of k for Beam 2 is negative, and the Young’s modulus is high at z = 0

and decreases towards z = h. This case is designated as hard impact.

For comparison a homogeneous beam (Beam 3) is also considered.

The bending stiffness kb of all three beams is kept 261 N/mm. The

bending stiffness is calculated as

kb ¼
48D�

11

L3
ð25Þ

where D�
11 is the reduced stiffness [29]. For the homogeneous beam

the above relation takes the simple form kb ¼ 48Eh3

ð1ÿm2ÞL3.

4.1. Contact force–contact length (F–b) relations and contact stresses

The contact force–half contact length (F–b) relations are shown

in Fig. 3 for all three beams. In the same plot the Hertzian relations

for a half-plane for the three beams are given. The Hertzian relation

for a homogeneous half-plane under plane strain is given by [30]

F ¼ pE
4R
b
2
where E ¼ E=ð1ÿ m2Þ. In Fig. 3 the Hertzian plots for the

two graded beams are based on the Young’s modulus E(0) on the

contacting surface. One can note that for small contact lengths
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the F–b relation for a homogeneous beam agrees well with that of

the corresponding half-plane. As the contact force increases the

contact length in the homogeneous beam becomes slightly larger

than that in the half-plane. This is due to the finite curvature of

the deformed beam, and the contact relation can be modified to ac-

count for the finite curvature of the beam (jbeam) as discussed in

[30,31]. The present numerical solution agrees well with the cor-

rected F–b relation for the homogenous beam as shown in Fig. 3.

In the case of FG beams we observe the following: first we will

consider the hard impact case wherein E varies from a higher value

on the contacting surface to a lower value inside the beam. For

small contact force, the contact length is slightly larger than the

corresponding Hertzian result as the indenter begins to see the soft

material ahead of the contact region. As the load is increases afore-

mentioned curvature effect also comes into play increasing the

contact length further, and the F–b relation deviates considerably

from the Hertzian result based on the surface Young’s modulus.

The reverse is true for soft impact wherein the Young’s modulus

increases from a smaller value at the contact surface to a larger

value inside the beam. In the beginning the contact length is

slightly smaller than the Hertzian result. This is again because

the indenter senses the stiffer material ahead of the contact region.

As the force is increased the rate of increase of contact length

should decrease because of the stiffer material ahead. However,

the curvature effect comes into play, which tends to increase the

contact length. Thus the two effects seem to nullify each other

and the F–b relation follows the power law for considerable

amount of contact force, even better than the homogeneous beam.

The contact stress distribution (ÿrzz(x) vs. v) for the three types

of beam are presented in Fig. 4. Due to symmetry only one half of

the distribution for 0 < v/b < 1 is shown. The results shown in Fig. 4

for contact length b = 2.5 mm (b/R = 0.125 or b/h = 0.25). Obviously

the peak stress is proportional to the contact force which, for a gi-

ven contact length, is the highest for the hard impact case and the

lowest for the soft impact case (also see Fig. 3).

4.2. Stress field

The variation of bending stress rxx(L/2,z) at the center of the

beam (below the indenter) at x = L/2 is shown in Fig. 5. The results

reveal no surprises and they are similar to that discussed for a gen-

eral loading in Ref. [29]. The bending stress varies linearly in the

homogeneous beam except in the vicinity of contact. The nonlinear

variation of stresses in the FG beams is mainly due to the variation

of E through the thickness. The stress concentration in the vicinity

of contact is more pronounced in the hard impact case. Sample

normalized transverse shear stress distribution, sxz(z), across the

beam height are shown in Fig. 6 for a cross section in the vicinity

of contact (x = L/2 + b), and in Fig. 7 for a cross section away from

contact (x = 3L/4). The shear stresses are normalized by the average

shear stress, F/h. One can see the typical shear stress concentration

near the contact surface (Fig. 6). These maximum shear stresses are

responsible for damage initiation due to low-velocity impact. The

shear stress concentration is much higher in hard contact case.

The shear stresses away from contact (Fig. 7) are similar to that

in homogeneous (parabolic variation) and FG beams reported ear-

lier [29].

Table 1

Properties of the three materials used in the present study.

E0 (GPa) Eh (GPa) Grading parameter k (mÿ1) Poisson’s ratio m Bending stiffness kb (N/mm)

1 Functionally graded beam (soft impact) 20 200 +230 0.25 261

2 Functionally graded beam (hard impact) 200 20 ÿ230 0.25 261

3 Homogeneous beam 61.1 61.1 0 0.25 261

Fig. 2. Variation of Young’s modulus through the thickness of three different beams

considered.

Fig. 3. Logarithmic plot of contact force–contact length relations for various beams.

For FG beams Hertzian approximations are based on the Young’s modulus of the

material at the contacting surface.

Fig. 4. Contact stress distribution in the three beams for b = 2.5 mm (b/R = 0.125 or

b/h = 0.25).
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4.3. Maximum stresses and strains

One of the goals of this paper is to explore the possibility of

using functionally graded materials to reduce impact damage.

Hence, we would like to compare maximum stresses and strains

in various beams for a given impact energy. However, we do not

have knowledge of strength or allowable stresses for FG materials.

They will vary from point to point as the Young’s modulus varies.

Hence, it would be reasonable to look at maximum strains rather

than maximum stresses. Maximum strains were calculated from

the strain values in the entire beam and they are the global maxi-

mum. The maximum principal strain in the beam is plotted in

Fig. 8 as a function of impact energy. The maximum shear strain

is plotted in Fig. 9. From Fig. 8 it is clear that the maximum princi-

pal strain is much less in soft impact, that is, when the FG beam is

positioned such way the impact occurs on the softer side. The max-

imum strain is the largest in hard impact and the homogeneous

beam’s performance is somewhere in between. We look at maxi-

mum strain as it is expected to govern failure in brittle materials.

If the material is ductile, then one might look into maximum shear

strain for the purpose of comparison. If maximum shear strain is

considered (Fig. 9), homogeneous beam has the best performance.

The maximum shear strain in the homogeneous beam is less than

that in the two FG beams. Within the two FG beams the softer im-

pact produces less maximum shear strain.

4.4. Interlaminar shear stresses

Lamination or layering is still the popular process for making

beam/plate like composite structures. If the FG beams are fabri-

cated using the lamination process, then the interlaminar shear

stress (ILS) szx, which is also equal to the transverse shear stress

sxz, will play a role in determining the integrity of the lamination

Fig. 5. An example of variation of bending stresses through the thickness.

Fig. 6. Transverse shear stresses at a cross section in the vicinity of contact. The

results are for b = 1 mm.

Fig. 7. Transverse shear stress at a cross section away from contact. Note the typical

parabolic profile in the homogeneous beam and slight deviations from that in FG

beams.

Fig. 8. Maximum principal strain in the three beams as a function of impact energy.

Fig. 9. Maximum shear strain in the three beams as a function of impact energy.
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process. The maximum interlaminar shear stress as a function of

impact energy is plotted for the three types of beams in Fig. 10.

Again the maximum stresses presented are the global maximum.

It can be seen that for a given impact energy the ILS is much lower

in soft impact compared to the other two cases. That means, for a

given interlaminar shear strength, the beam can take higher im-

pact load in soft impact.

5. Summary and conclusions

The problem of smooth indentation of a beammade of function-

ally graded material is studied. Two types of gradations – soft to

hard and hard to soft – and a homogeneous material were studied.

The flexural stiffness of the three beams was kept the same. For

small contact force the Hertzian semi-elliptical contact stress dis-

tribution seems to be a reasonable approximation. However, vari-

ation of Young’s modulus in FG beams has a significant effect on

the contact length. In addition, the finite curvature of the beam

also tends to increase the contact length.

For a given contact force the contact length in soft contact is

about three times that in hard contact. This reduces the peak con-

tact stress which in turn seems to reduce the stresses in the contact

region. It is found that for a given impact energy or a given maxi-

mum contact force, maximum normal and shear strains were in

general less in soft impact, i.e., when the impact/contact occurred

on the softer side. This is especially true for interlaminar shear

stresses, which may play a role in the design of laminated FG

beams.
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